汪志勇,汉族,湖南祁阳人,教授,博士生导师,重庆市第三批学术技术带头人后备人选。曾就读于衡阳师范星空体育·(StarSky Sports)官方网站、南京师范大学和南京大学,分别获得理学学士、硕士和博士学位。历任重庆理工大学讲师、副教授、教授,美国加州大学河滨分校国家公派访问学者。曾获“重庆市留学人员回国创业创新支持计划”创新类资助。长期从事统计物理、(软)凝聚态物理领域的理论和模拟方面的研究工作,当前主要关注复杂系统的相变理论、软物质表面与界面物理、胶体/聚合物物理、纳米离子通道、能量转换与储存、以及低维软材料计算设计与物性预测等相关赛道。已在各类SCI源刊累计发表40余篇学术论文,总引用频次1000+(Google Scholar)。承担《计算物理》和《热力学与统计物理》的教学任务。
Email: zywang(at)swu.edu.cn & zywanglss(at)gmail.com
招生愿景*对富有创造力的学生,课题组将给予充分的自主权利并不遗余力地予以支持;但如果未来的你跟导师一样资质平平,必须打碎夕阳,揉进月光,褪去迷茫,背上行囊,只为不负诗中的远方。为学必先为人,桃李不言,下自成蹊;课题组热枕欢迎积极、阳光、自律、且志同道合的年轻伙伴。不是每一次努力都有收获;但是,每一次收获都必须付诸努力!常怀恬淡之心,秉承张弛有度,繁忙之时需沉静,烦恼之时要超脱。Looking Back and Moving Forward……
承担的主要科研项目(PI)
聚电解质表面吸附的分子模拟研究
重庆市自然科学基金 CSTB2022NSCQ-MSX0512, 2022.08-2025.07
离子液体界面绑定机制研究
西南大学人才引进基金 swu019021, 2019.07-2022.06
生命体系中极性逆转与同性相吸的物理机制研究
国家自然科学基金 11774041, 2018.01-2021.12
受限条件下的离子行为与嵌段共聚物共混自组装
重庆市基础科学与前沿技术研究专项重点基金 cstc2015jcyjBX0056, 2015.12-2018.12
生物界面电荷反转的计算机模拟研究
重庆市自然科学基金 cstc2012jjA00019, 2012.09-2015.08
基于分子模拟的双电层极性逆转与过度充电的物理驱动机制研究
国家自然科学基金 11104364, 2012.01-2014.12
代表性学术论文 CLICK ORCiD FOR COMPLETE LIST
[1] H.-Y. Liu and Z.-Y. Wang
Metallic Be2M (M = Al, Ga) monolayers as potential universal anodes for Li and post-Li ion batteries
Colloids and Surfaces A, 692, 133886 (2024)
[2] H.-Y. Li, B. Zhang, and Z.-Y. Wang
Conformational and static properties of tagged chains in solvents: effect of chain connectivity in solvent molecules
Soft Matter, 20, 3073-3081 (2024)
[3] H.-Y. Liu, B. Zhang, and Z.-Y. Wang
Dirac t-boron nitride monolayer as an appealing binder-free anode for alkali metal ion batteries
Langmuir, 40, 1524-1533 (2024)
[4] K. Sheng, B. Zhang, and Z.-Y. Wang
Valley polarization in a two-dimensional high-temperature semiconducting TiInTe3 honeycomb ferromagnet
Acta Materialia, 262, 119461 (2024)
[5] H.-Y. Liu and Z.-Y. Wang
Computational verification of conductive Be2Zn monolayer as a superior anode for alkali and alkaline ion batteries
Chemical Engineering Journal, 477, 147245 (2023)
[6] K. Sheng, B. Zhang, and Z.-Y. Wang
Piezoelectricity and valley polarization in a semilithiated 2H-TiTe2 monolayer with near room-temperature ferromagnetism
Physical Chemistry Chemical Physics, 25, 23738-23745 (2023)
[7] J. Peng and Z.-Y. Wang
Monolayer TiSi2P4 as a high-performance anode for Na-ion batteries
Journal of Physics: Condensed Matter (Featured Article: Cover Image), 35, 455702 (2023)
[8] J. Wen, J. Peng, B. Zhang, and Z.-Y. Wang
Theoretical determination of superior high-temperature thermoelectricity in an n-type doped 2H-ZrI2 monolayer
Nanoscale, 15, 4397-4407 (2023)
[9] K. Sheng, B. Zhang, H.-K. Yuan, and Z.-Y. Wang
Strain-engineered topological phase transitions in ferrovalley 2H-RuCl2 monolayer
Physical Review B, 105, 195312 (2022)
[10] K. Sheng, Q. Chen, H.-K. Yuan, and Z.-Y. Wang
Monolayer CeI2: An intrinsic room-temperature ferrovalley semiconductor
Physical Review B (ESI Highly Cited Paper from Sep 2022 to Dec 2023), 105, 075304 (2022)
[11] K. Sheng, H.-K. Yuan, and Z.-Y. Wang
Monolayer gadolinium halides GdX2 (X = F, Cl, Br): intrinsic ferrovalley materials with spontaneous spin and valley polarizations
Physical Chemistry Chemical Physics, 24, 3865-3874 (2022)
[12] K. Sheng, H.-K. Yuan, and Z.-Y. Wang
Intrinsic ferromagnetism in 2D h-CrC semiconductors with strong magnetic anisotropy and high Curie temperatures
Journal of Materials Chemistry C (Hot Paper by Editors’ Choice), 9, 16495-16505 (2021)
[13] Z.-Y. Wang, T. Yang, and X. Wang
Structural analysis of confined monovalent salts: Combined effects of steric hindrance, surface charge representation, and dielectric response
Electrochimica Acta, 336, 135707 (2020)
[14] Q. Duan, J. Ji, X. Hong, Y. Fu, C. Wang, K. Zhou, X. Liu, H. Yang, and Z.-Y. Wang
Design of hole-transport-material free CH3NH3PbI3/CsSnI3 all-perovskite heterojunction efficient solar cells by device simulation
Solar Energy (ESI Highly Cited Paper from Mar 2021 to Dec 2022), 201, 555-560 (2020)
[15] K. Sheng, Z.-Y. Wang, H.-K. Yuan, and H. Chen
Two-dimensional hexagonal manganese carbide monolayer with intrinsic ferromagnetism and half-metallicity
New Journal of Physics, 22, 103049 (2020)
[16] T. Liao, H. Zhang, and Z.-Y. Wang
Improved Design of a Thermophotovoltaic Device
IEEE Transactions on Electron Devices, 62, 4709-4712 (2020)
[17] Z.-Y. Wang, P. Zhang, and Z. Ma
On the physics of both surface overcharging and charge reversal at heterophase interfaces
Physical Chemistry Chemical Physics, 20, 4118-4128 (2018)
[18] Z.-Y. Wang and J. Wu
Ion association at discretely-charged dielectric interfaces: Giant charge inversion
Journal of Chemical Physics (Featured Article: AIP News), 147, 024703 (2017)
[19] Z.-Y. Wang and Z. Ma
Examining the contributions of image-charge forces to charge reversal: Discrete versus continuum modeling of surface charges
Journal of Chemical Theory and Computation, 12, 2880-2888 (2016)
[20] Z.-Y. Wang
Charge reversal at a planar boundary between two dielectrics
Physical Review E (Highlights in Kaleidoscope), 93, 012605 (2016)
[21] Z.-Y. Wang
Image-induced overcharging in the weakly charged surfaces
Journal of Statistical Mechanics: Theory and Experiment, (2016), 043205
[22] Z.-Y. Wang, Z. Ma, and Y.-Q. Ma
Suppression and promotion of charge inversion in the presence of multivalent coions
Physical Review E (Rapid Communications), 92, 060303(R) (2015)
[23] Q. Liang, Q.-Y. Wu, and Z.-Y. Wang
Effect of hydrophobic mismatch on domain formation and peptide sorting in the multicomponent lipid bilayers in the presence of immobilized peptides
Journal of Chemical Physics (Featured Article: Cover Image), 141, 074702 (2014)
[24] Y.-P. Xie, Z.-Y. Wang, and Z. F. Hou
The phase stability and elastic properties of MgZn2 and Mg4Zn7 in Mg-Zn alloys
Scripta Materialia, 68, 495-498 (2013)
[25] Z.-Y. Wang and Y.-Q. Ma
Computational evidence of two driving mechanisms for overcharging in an electric double layer near the point of zero charge
Physical Review E (Brief Reports), 85, 062501 (2012)
[26] X.-W. Wang, D.-Y. Zhang, S.-Q. Tang, L.-J. Xie, Z.-Y. Wang, and L.-M. Kuang
Photonic two-qubit parity gate with tiny cross-Kerr nonlinearity
Physical Review A, 85, 052326 (2012)
[27] Z.-Y. Wang, Y.-P. Xie, Q. Liang, Z. Ma, and J. Wei
Looking deeper into the structure of mixed electric double layers near the point of zero charge
Journal of Chemical Physics, 137, 174707; 249902(E) (2012)
[28] Z.-Y. Wang and Y.-Q. Ma
A molecular simulation study on the role of ionic size and dielectric images in near-surface ion distribution far from the strong-coupling limit
Journal of Chemical Physics, 136, 234701 (2012)
[29] Z.-Y. Wang and Y.-Q. Ma
Impact of headgroup charges, ionic sizes, and dielectric images on charge inversion: A Monte Carlo simulation study
Journal of Physical Chemistry B, 114, 13386-13392 (2010)
[30] Z.-Y. Wang and Y.-Q. Ma
Insights from Monte Carlo simulations on charge inversion of planar electric double layers in mixtures of asymmetric electrolytes
Journal of Chemical Physics, 133, 064704 (2010)
Monte Carlo determination of mixed electrolytes next to a planar dielectric interface with different surface charge distributions
Journal of Chemical Physics, 131, 244715 (2009)